FOOD BLENDING CASE STUDIES

FOOD BLENDING WHITE PAPERS & ARTICLES

  • Best Practices For Conducting Virtual FAT's In Food Manufacturing

    When the COVID-19 pandemic hit, it became critical that manufacturing plants remain open and operating to provide essential items such as food, beverage, sanitation supplies and more to consumers. New practices were put into place to ensure the safety of all and maintain efficient, effective operations. A critical aspect of keeping up with consumer demand has been the testing and acceptance of new equipment. With consumer packaged goods (CPG) companies reluctant to bring suppliers into their facilities and service technicians limited in their ability to travel due to COVID-19 protocol, the industry has had to get creative to complete the process.

  • Article: The Science Of Mixing Food Powders & Liquids This article explains the technologies and processes involved in product mixing of solids and liquids. By Scott Jones, Marketing Manager, Marion Mixers, Inc.
  • Contamination Control In Food Processing Equipment

    Here, we highlight the issues processors experience in preventing contamination and how engineering for contamination control in food processing equipment can be a solution.

  • Mixing Equipment And Applications In The Food Industry

    We discuss traditional and new specialty mixing technologies for food manufacturing and present sample applications of processing challenges and the corresponding mixing technologies to resolve them.

FOOD BLENDING PRODUCTS

Silverson High Shear In-Line mixers are supremely efficient and rapid in operation and are capable of reducing mixing times by up to 90%. The action of any Silverson In-Line mixer can be modified with the use of rapidly interchangeable workheads. This enables any machine to mix, emulsify, homogenize, solubilize, suspend, disperse and disintegrate solids.

Dispersing powders into liquids and creating a consistent homogeneous product, time after time, is one of the most difficult of all mixing applications. To satisfy this need Silverson has developed the Flashblend, a high shear system for rapid incorporation of a wide range of powders, including problematic gums and thickeners.

The Scott Turbon® Turbo Dixie Mixer is capable of mixing highly viscous products such as peanut butter as well as loose emulsions that can be finished with the HSM Inline Mixer. The flow characteristics provide medium shear with maximum flow.

The number of dairy products available in the marketplace has exploded in the past 50 years. Consumers are trying – and buying – new, inventive, innovative products that taste good, provide health benefits, are readily available, and can be easily transported.

The introduction of powders into a fluid process is one of the most challenging mixing duties you will come across. Incorporating powders directly into a liquid stream, can speed up your process, improve your product quality, while at the same time improve operator safety.

Hayward Gordon supplies peristaltic and circumferential piston-type pumps used in the production process for delicate handling of ingredients. We successfully pump yeast, diatomaceous earth, mash, and provide injection packages for preservatives, colors, and flavors.

Silverson Mixer Homogenizers are fast and efficient and are capable of producing a fine droplet or particle size, typically in the range of 2 – 5 microns. This degree of homogenization is suitable for the vast majority of products, such as sauces and flavor emulsions, creams and lotions.

The Silverson Verso is a bench top In-Line mixer ideal for laboratory or pilot scale applications. The unit offers excellent reproducibility when scaling up and provides an accurate and easy means of forecasting the performance of larger In-Line mixers under full-scale working conditions.

ABOUT FOOD BLENDING

Industrial food blending usually refers to the process of mixing two distinct solids or mixing of bulk solids with small ratios of liquids. Blending and mixing are interchangeable terms. However, blending is generally more gentle than mixing, which is why it’s technically different. The outcome of blending is to take two or more pure elements and combine them into a new product where samples of it will contain the same ratio of the elements that were combined to be blended.   

Examples of products created from mixing solids in food manufacturing include: cake mixes, coffee, tea, beverage powders, ice-cream mixes, yogurts, spices, flours, trail mixes, and cereals.

Examples of or products created from mixing solids with liquids in food manufacturing include: confectionary, pasta, ready-to-eat cereals, pet foods, and dairy products.

Blending equipment is offered in various styles. The style that your food-making operation needs will be based on many different factors, such as, but not limited to: what products are being blended, efficiency, batch size, the facility’s available manufacturing space, preciseness of the blend, energy costs, discharging options, cleaning, and sanitation options.

The most-common styles of blending equipment are:

  • Ribbon Benders — are the most-popular blenders. They use helical ribbons, accommodate larger batch sizes, are very versatile, and cost efficient.
  • Vertical Blenders — are cone shaped and designed for vacuum operations. These blenders are easy to clean, are gentler than horizontal blenders, and have virtually 100 percent discharge.
  • Tumble Blenders — are double-cone shaped and rotate on a horizontal axis. These blenders are generally used for precise blends and thorough blending of powders.
  • Paddle Blenders — These blenders use multiple paddles as agitators and accommodate larger batch sizes. They also have very low shear and generate very minimal heat.

After choosing the style of industrial food blender that will suit your company’s food-processing requirements, it will be equally important to make sure the ribbons, paddles, rods, and shafts are matched to the physical properties of the elements being blended. This is imperative to ensuring better efficiency and reducing maintenance downtime.